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Abstract

We present a computationally efficient scheme for multiple source location

estimation based on the EM Algorithm. The proposed scheme is optimal in the

sense that it converges iteratively to the exact Maximum Likelihood estimate

of all the unknown parameters simultaneously. The method can be applied to a

wide range of problems arising in signal and array processing.
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I. Introduction

The Maximum Likelihood (ML) method is widely regarded as the optimal

procedure in parameter estimation. However, when applied to problems involving

composite signals and a large number of parameters, the ML method tends to be

computationally complex and time consuming. As an example, consider the

problem of multiple source location estimation by signal observations using an

array of spatially distributed sensors. The received signals are composed of the

contributions from the various :signal sources, observed in the presence of

additive noises. The ML estimate of the various source location parameters

jointly requires the solution of a complicated, non-linear optimization problem

in several unknowns. Problems of that nature frequently arise in time series

dnalysis, array processing, radar/sonar, acoustical and geophysical signal

processing.

In this report we develop a computationally efficient scheme for parameter

estimation of composite signals, based on the EM algorithm. The proposed scheme is

optimal in the sense that it converges Iteratively to the exact ML estimate of

all the unknown parameters simultaneously.



ii. Maximum Likelihood Estimation and the EM Algorithm

Let Y denote the data vector possessing the probability density /y _ _)

indexed by the parameter vector 96 9. (9 is a subset of the Euclidean

K-space. Given an observed ', the ML estimate --M is the value of

that maximizes the log-likelihood, that is

_,A4Ae (1)

Suppose the data vector Y can be viewed as being incomplete, and we can

specify some "complete" data X related to Y by

/ -y (2)

where j (,) is a non-invertable (many-to-one) transformation. In the multiple

source location problem, the 'complete' data could be the observation of the

various source signals separately, where the observed (incomplete) data is

the sum of the signal contributions from the various sources.

The EM algorithm is directed at finding the solution to (1); however, it does

so by making an essential use of the complete data specification. The algorithm

is basically an iterative method. It starts with an initial guess 19 and

let i'"'vr) be defined inductively by

-- • l I I (3)
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where /( - j is the probability density of K and j 2;(1P
denotes the conditional expectation given , computed using the parameter

value @ The heuristic idea here is that we would like to choose O that

maximizes foj #, j X ) , the log-likelihood of the complete data.

However, since oJ /X j S) is not available to us (because

the complete data is not available), we maximize instead its expectation, given

the observed data ' . Since we have used the current estimate 0 ") rather

than the actual value of P which is unknown, the conditional expectation is

not exact. Thus, tne algorithm iterates, using each new parameter estimate to

improve the conditional expectation on the next iteration cycle and thus to

improve the next parameter estimate.

The EM algorithm was first presented in [11 , where it is shown that

under the usual regularity conditions, the algorithm converges to the desired

result, that is -gf ) , where each iteration increases the

likelihood. The basic considerations leading to the EM algorithm (Eq.(3)) are

outlined in Appendix A for the convenience of the reader. The rate of

convergence of the algorithm is exponential, depending on the fraction of the

covariance of the "complete" data that can be predicted using the observed

data. If that fraction is small, the rate of convergence tends

to be slow, in which case one could use standard numerical methods 
to accelerate

the algorithm.

We note that the EM algorithm is not uniquely defined. The transformation

/-(") relating X to Y can be any non-invertable transformation.

Obviously, there are many possible "complete" data specifications that will

generate the observed data. Thus, the EM algorithm can be implemented in many

possible ways. The final outcome, which is the ML estimate, is completely
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unaffected by the way in, which H(.) is specified (i.e., the choice of "complete"

data). However, the choice of -IG) may critically affect the complexity and

rate of convergence of the algorithm, and the unfortunate choice of H (-) may
yield a completely useless algorithm.

We shall proceed as follows: First we develop the EM algorithm for the

Linear-Gaussian case. This case covers a wide range of applications. Then we

show that for the class of problems of interest here, there is a natural choice of

the "complete" data, leading to a surprisingly simple algorithm to extract the

ML estimates.
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Ill. The Linear-Gaussian Case

Suppose that Y-- -) ,where is a "fX4 matrix (mcn), and )(

possesses the following multivariate Gaussian probability density:

where A= if >/ is real-valued, A: 2 if is complex valued,

and the superscript i denotes the conjugate-transpose operation. We shall

refer to this case as the Linear-Gaussian case. Taking the logarithmo- (4),

we obtain:

oj~ ~~ ,. o= - eo Xce

2.2

where bi7 (") stands for the trace of the bracketed matrix. Thus,

,(' .I

+ f7 (/l ( (6)
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where I (' n E~f /y
Since X and y are jointly Gaussian, these conditional expectations

are readily available in the literature (e.g. 121, Chap. 5):

.,. .',''' (7)

where I is the identity matrix, and r(i) is the "Kalman Gain"

defined by:

The EM algorithm is completely specified by Eqs. (&) - (9); the algorithm

iterates between calculating ac" and I i) and maximizing the

expression in (6) with respect to 6 , where each iteration increases the

likelihood. We observe that ,C6( !) )/Y,: f I'(Eq. (6) ) and

/~pj/ (I_ ) (Eq. (5)) have the same dependence on Maximizing

c-- f'x (. , )//_ 9. 7fwJ } with respect to 6 is the.

same as maximizing 9o,,/ (i'; ) with respect to j Hence, the EM

algorithm essentially requires the ML solution in the ,X model which might

be significantly simpler than the direct ML solution in the Y model.
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IV. Application to Signal Processing

Let the mathematical model characterizing the observed signal(s)

be given by

where 't#) are the vector signals received in the absence of noise.

We shilI be concerned with /t~' composed of

where is the parameter vector associated with the 4 signal

component. The specific problem we have in mind is multiple source location

esti, ation, in which case the _ I YA ) are the array signals

received from the source, and are the corresponding source

location parameters (bearing and range, velocity components, etc.)

In addition, the model given by (10) covers a wide range of problems arising

in array and signal processing.

We shall now consider the joint estimation of the various iq for the

case of deterministic signals and for the case of stochastic Gaussian signals

separately.

A. Deterministic Signals

Consider the model of (10) under the following assumptions:

- The are conditionally known to the observer (i.e.

qiven _ , we can construct JA ) ).

- Yl) are vector zero-mean white Gaussian stochastic processes

whose covariance matrix is 'E{J11)1 ;of = 9 (t" ),

whereQis a constant matrix and J'() Is the impulse function.
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Under the above assumptions, the log-likelihood function is given by

V / y - - < "

where-C is a normalizing constant. The result in (11) is a straightforward

multi-chdnnel extension of the known (deterministic) signal in a white Gaussian

noise problem ( 3), Chap. 4). In case we are given only a discrete set of

observations (Jlft) L'fJ 2,... A' , the log-likelihood is still given by

(11), where the integral over is replaced by the sum over the t;.d

Thus, the joint ML estimation of the various 0 is obtained as the solution to:

r I9c - X

A (12)

In the case of discrete observations, the corresponding optimization problem is:

,A A " (13)

In either case, the ML method calls for the optimization 
of the log-likelihood

function with respect to all the )J jointly. Of course, brute force can

always be used to solve the problem, evaluating the objective function on a coarse

grid to roughly locate the global minimum, and then applying the Gauss method or

Newton-Raphson or some other iterative gradient-search algorithm. However, when

applied to the probleu at hand, these methods tend to be very complex dnd
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computationally time consuming.

Having the EM algorithm in mind, we would like to simplify the optimization

problem associated with the direct ML approach. To apply the algorithm to the

problem at hand, the first step is to specify the "complete' data. A natural

choice of the "complete" data is obtained by decomposing Vlt) into

K

where

and the )1/ are chosen to be mutually uncorrelated, zero-mean Gaussian

vector stochastic processes satisfying

le b - (14.3)

Let the complete data _Xtt) be composed of the various tt))-. Then

from (14.1), the relation between the "complete" data and the observed (incomplete)

data is given by

LJit)r (51

where

/--- [I... , (1.2)

K terms
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Since the "complete" data is Gaussian, and the relation between /() Ind

4/) is linear, the results developed for the Linear-Gaussian case can be

applied here. The detailed derivation is given in Appendix B. The resulting

algorithm is:

E-step For i, 2,...6< , compute:

M-step For f" ,z,... k"

~L

E-step Cmue

It, " #A) (17.2)

The optimization required by (16.2) is, in fact, the optimization problemD

associated with the ML estimation of the 1A given separate observations

of the An entirely parallel statement can be made with respect



to the optimization required by (17.2). Thus, the algorithm decouples the

optimization associated with the direct ML approach into the K separate ML

optimizations as illustrated in Fig. 1 . Hence , the complexity of the algorithm is

completely unaffected by the assumed number of signal components. As K

increases, we have to increase the number of ML processors in parallel; however,

each processor is maximized separately. Since the algorithm is based on the

EM method, it must converge to the exact ML estimate of the various L9 41-

simultaneously, where each iteration increases the likelihood.

We note that the CA) j must satisfy the constraint (16.3), but otherwise

they are arbitrary free variables in the algorithm. The choice of the PA 'i does

not affect the value of the final estimates; however, they can be used to control

the rate of convergence of the algorithm.

Gaussian Signals

Consider the model of (10) under the following assumptions:

- The j (tj v 9,) A . ",, -.. are mutually uncorrelated,

wide sense stationary (WSS), zero-mean Gaussian vector stochastic processes

with the spectral density matricies SC, ') (1, ,...l< respectively.

- ~~)11) is uncorrelated, WSS, zero-mean and Gaussian with the spectral

density matrix /V(w) .

If the observation interval T,7j-7- is long compared with the correlation

time (inverse bandwidth) of the signals and the noises, the log-likelihood is

given by (see Appendix C)

d f{(O( le t JP rot Y("; (18.1)
wher

I where



J 4)e 1 9 (W e td 4.:e L (18.2)
-IZ

and

The sutnnation in (18.1) is carried over all We in the signal frequency band.

In the case of discrete observations V : (i.At , the log-likelihood

is still given by (18.1), where [y(O')Jb We' Prtel/V are the discrete

Fourier transform (DFT) of a and 3) is given by

(18.3), where ,5 ( is the spectral matrix of the corresponding sampled

signal, and 4/4(j) is the spectral matrix of the sampled noise. Thus, in

either case, the joint ML estimation of the various id is obtained as the

solution to:

M10 de t.pe4,) 4d:,e .Pc (,_) y (0()
le)

A A A (.... .. l.. 0 k.- ", ... _ , iig)

Thus, as in the deterministic signal case, the direct ML approach requires

the joint optimization of the objective function with respect to all the Y .

Using the EM method, we would like to simplify the required optimization.

Using the same definition for the "complete" data as in the deterministic signal

case (Eq.(14)) and applying the results developed for the Linear-Gaussian case,

we obtain the following algorithm:
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E-step Compute:

i (4(~J dk'P~v~0?~y4)4,~)p(J~,;~Iw.)t~ ('j ~~') (20.1)
M-step

to del t 6 !A) - t (20.2)

where we define

B4 Lh&(,.j A 44 (20.3)

and the -i are arbitrary real-valued scalars satisfying the condition

(16.3). The detailed considerations leading to Eq.(20) are given in Appendix D.

Perhaps the most striking feature of the algorithm is that it decouples the

complex optimization associated with the direct ML approach into the K separate

ML optimizations as illustrated in Fig. 1; Thus, as in the deterministic

signal case, we obtain a considerable simplification in estimator structure and

computations.

Example: Multiple Source Location Estimation

The basic system of interest here consists of several spatially distributed

signal sources and an array-of several spatially distributed sensors. The observed

signals can be modelled using (10), where .ktt.,A)are the array signals received
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from the h source, and P# are the source location parameters (bearing

and range. velocity components, etc.). Using the proposed scheme (Fig. 1),

we obtain the exact ML estimates of the various source location parameters,

while circumventing the complex multiple parameter optimization associated

with the direct ML approach. For more details we refer the interested reader

to 14 1 and 51. To simplify the example, we have considered the following

situation:

- The array consists of 10 co-linear and evenly spaced sensors. The observed

data consists of 100 time samples at each sensor output.

- There are three far-field sources at bearingS D.,0.15 and 0.3 radians,

neasured relative to the Boresight direction. Each source radiates a

triangular pulse whose power (energy per sample) is normalized to 1, and

whose duration is 20 time points.

- The additive noises are uncorrelated from sensor to sensor with the same

spectral level of 0.5 (that is, the post-integration SNR per channel is

approximately 16 db).

We have also assumed that AL /U4t.'/D , where A* is the sampling period,

AL is the spacing between adjacent sensors, and 44 is the velocity of

propagation in the medium. The problem is to estimate the various source bearings

simultaneously.

In Fig. 2 we have plotted the conventional beam-former output as a function of

bearing. As we can see, the standard method cannot resolve the various sources.

In Fig. 3 we have plotted the outcome using our algorithm. We clearly see that

after about 5 iterations, the algorithm essentially converges to the true bearings,

and the three sources are resolved correctly.



-15-

V. Conclusions

We have presented a computationally efficient scheme for parameter estimation

of composite signals based on the EM algorithm. The proposed scheme is optimal in

the sense that it converges iteratively to the exact Maximum Likelihood estimate

of all the unknown parameters simultaneously. The method can be applied to a

wide range of problems arising in signal and array processing.
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Appendix A The EM Algorithm

Let H(6)' Y where H(') is a non-invertable (many-to-one) transformation.

Express densities

Taking the logarithm on both sides of (A.1), we obtain

Denote 9-/(J)and taking conditional expectations given Y- i for a
- -

parameter value 90 , we obtain

- E 1'~14/y~# '~ )~-~j ~ 4'( ')-V4,~')(A.3)

Invoking the Jensen's inequality, we have that V(10')' V(01 V') Hence

Eq.(A.4) forms the basis to the EM algorithm. The algorithm starts with an

initial guess 19/11 , and let &('##)be defined inductively by

9(A.5)19
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Eqs. (A.5) and (3) are identical. We note that since L9 61) i s the valIue

of 49 ttldt ma~ximizes LA(~~iw),then according to (A.4), each iteration

of the algorithm increases the value of /Y, / q 0
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Appendix B. Derivation of Eq.(16)

The "complete" data Y(*) is given by

-I t I I i
/0 ( 0 .- ' t )) B1

where the Y(J) are given by (14.2), rewritten here for reference

(B.2)

The "-1 (t,) are chosen to be statistically independent, zero-mean and

Gaussian with the covariance to ±jt A 4d)- I V 9A" "(t-. ) ,
where 9 k9 . The are, therefore, mutually independent and

hence, following the usual considerstions (3], Chap. 4), we obtain

Jl

- - (B.3)

T.

Thus,

S_, -2 ) - /'€)". ;-- (B.4)

where ZC' contains all the terms that are independent of Te The '

are the components of. XI"I It) , to be computed from
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F ~ Vt f/) y (B. 5)

Using Eq.(7) in (B.4) and following some straightforward matrix manipulations,

we obtdin (16.1). Now, since ek enters the right side of (B.4) only through the

term in the sum, the joint maximization of (B.3) with respect to the various

'6 decouples into the K separate optimizations as suggested by (16.2).
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Appendix C. Derivation of Eq.(18)

Let the data vector Y be denerated by Fourier analyzing Y/0, that is

-- " 4 (C.1)

where tht, Y(wJe) are defined by (18.2). Since YIU) is Gaussian and the

are obtained by performing linear operations on Li), then the

.Y(cj, are jointly Gaussian. Since both signals and noises are assumed to be WSS,

then for observation interval T long compared with the correlation time of

the signals and the noises, the Y(e) are mutually uncorrelated (and thus,

in the Gaussian case, statistically independent) with the covariance matrix given by

where is defined by (18.2). It follows that

Ty (C.3)

Taking the logarithm on both sides of (C.3) immediately yields (18.1).



Appendix D. Derivation of Eq.(20)

Let the "complete" data )( be generated by Fourier analyzing the various

A'(t ,that is

L- ,, j L-y,.......

where _X-W) Y

,Y.L j Y e (0.2)

and Xft) are given by (14.2), rewritten here for reference

Xk~- bt~)), ) (D.3)

The are chosen to be statistically independent, zero-mean and

Gaussian with the spectral density matrix /,A (w)).RA 'M t.)). Since the

_4 (tj #j) are assumed to be statistically independent, then the Z( t ) are

statistically independent, in which case w (We) and Y( 43) are statistically
independent whenever 1d , . Furthermore, for long observation intervals and

WSS processes, the (we)(jf at different frequencies are statistically uncorrelated

(and thus independent) with the covariance matrix

,FfY (w) 0 Coe(0.4)

where h('oj is defined by (20.3). It follows that
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* .4

-I I ~'e (D.5)

Taking the logarithm on both sides of (0.5), we obtain

Taking the conditional expectation given Y- z for a parameter value

Y',we obtain

4 (0.7)

?,, e7o: , e(H

where is the ) block matrix of , to be computed from

Y ~ }V)(1k Ff~ f)Y(w //rp e);ef" (0.8)

Using Eq.(8) in (0.8) and following some straightforward matrix

manimpulations, we obtain (20.1). Since the (0, ) term of the double sum on

the right side of (D.7) depends only on * then the joint maximization of

(0.7) with respect to the various Yk decouples into the J separate

optimizations as suggested by (20.2).
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Figure Captions

Fig. 1: Signal Processing Via the EM Algorithm.

Fig. 2: Conventional Beamforming.

Fig. 3: Multiple Source Location Estimation Via the Proposed Algorithm.
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Fig. 2: Conventional Beamfonning.
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Fig. 3: Multiple Source Location Estimation Via the Proposed Algorithm.
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